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2 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 1999AbstractThe initialization of wavelet transforms and the inner product computations of wavelets with theirderivatives are very important in many applications. In this correspondence, the interpolatory subdivisionscheme (ISS) is proposed to solve these problems e�ciently. We introduce a general procedure to computethe exact values of derivatives of the interpolatory fundamental function and then derive a fast recursivealgorithm for the realization of the initialization and inner product evaluations. Error analysis of thealgorithm and its comparison with other approaches are discussed. Numerical experiments demonstratehigh performance of the algorithm. KeywordsWavelet transform, Interpolatory subdivision scheme, Wavelet-Galerkin algorithm.I. IntroductionWavelet transform has become a powerful tool for signal analysis. E�cient implementationof wavelet transforms is an important step towards further applications. The initialization ofwavelet transform arises from the pyramid algorithm for discrete wavelet transform or waveletpacket transform. One usually needs to compute the following coe�cients exactly before usingthe recursive pyramid algorithm:c0J(k) = 2� J2 Z f(t) (2�J t� k)dt: (1)There are several approaches to solve this problem (cf. [1], [2], [3]). Usually this problem istreated by approximating both the signal and the wavelet (or scaling function) using certainbasis function: f(t) =Xk f(k)�(t� k); (2) (t) =Xk h(k)�(t � k): (3)In [1], [2] the approximation basis is chosen to be the standard sinc function as in the Shannonsampling theorem [4]. In [3] the signal f is assumed to be piecewise constant in dyadic intervals.Equivalently, 0th-order B-splines were used to approximate the signal. Moreover, Chui's inter-polatory graphical display algorithm was used, which was in fact due to the re�nable propertyof splines [5], [6]. Therefore, most of these approaches can be attributed to the curve �ttingproblem using certain types of subdivision schemes. In this correspondence, we aim to use theinterpolatory subdivision scheme (ISS) [12], [13] to deal with this problem. In particular, we pro-pose the problem in a more general setting. For the numerical solution of PDEs using wavelets,DRAFT August 31, 1998



Y. P. WANG, R. QU: INITIALIZATION AND INNER PRODUCTCOMPUTATIONS OFWAVELET TRANSFORMBY ISS3the computations of the inner products of the signal (wavelets) with the derivatives of scalingfunctions or wavelets  (m) are usually needed. In wavelet-Garlerkin method, one usually needsto evaluate the following integral for all m;J 2 Z+ and k 2 Z:c(m)J (k) = 2� J2 Z f(t) (m)(2�J t� k)dt: (4)As an alternative, our method also provides a simple and e�cient way for the computation ofthe inner products of wavelets and their derivatives discussed in [7], [8].II. An interpolatory subdivision schemeA. The de�nitionsA uniform subdivision scheme which is also called the binary subdivision algorithm or stationarysubdivision, is de�ned as follows. Suppose that the initial control points in R3 (or in Rd; d � 1)are denoted by P 0i ; i 2 Z, then, the re�ned control points fP k+1i ; i 2 Zg are obtained from fP ki grecursively by the following re�nement equationsP k+1i =Xj2Z ai�2jP kj ; i 2 Z; k � 0: (5)Obviously, a typical example of a binary subdivision scheme is the scheme generating uniformB-splines of order n. In this case the mask is given by the binomial coe�cients. The scheme (5)is a stepwise interpolatory scheme if and only if the mask faj ; j 2 Zg satis�es a2i = �i; 8i 2 Z:Two frequently used interpolatory subdivision schemes are the `4{point interpolatory scheme'[10], [11] and the `6{point interpolatory scheme' [12]. A more general symmetric interpolatorysubdivision algorithm for curves was given by [12], [13]:8><>: P k+12i = P ki ;P k+12i+1 = nPj=0Ln;j(P ki�j + P ki+j+1); (6)where n is called the degree of the scheme and fLn;jg are given byLn;j = [(2n+ 1)!!]22 � 4n � (2n+ 1)! � (�1)j2j + 1 �0B@ 2n+ 1n� j 1CA ; j = 0; 1; � � � ; n; (7)where 0B@ 2n+ 1n� j 1CA denotes the binomial coe�cient.August 31, 1998 DRAFT



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 1999The scheme de�ned by (6) produces C n2 curves for any initial data. Furthermore, for such choiceof coe�cients the scheme reproduces all parametric polynomial curves of degree less than orequal to 2n+ 1 [13].Let �n(t) be the limit curve generated from the cardinal data fPi = (i; �0)T g. Then �n(i) =�i; i 2 Z and �n(t) satis�es the following two-scale relation�n(t) = 2n+1Xj=�(2n+1) gnk�n(2t� k); t 2 R; (8)where gn = fLn;n; 0; Ln;n�1; � � � ; 0; Ln;0; 1; Ln;0; 0; � � � ;Ln;n�1; 0; Ln;ng: Usually �n(t) is called the interpolatory fundamental function or basis.B. Computing procedure for the derivative �(m)nIn this section, we present the principle for the computation of the exact values of derivatives ofthe interpolatory function �n. As an example, we only consider the case of n = 2. More detailscan be found in [14], [15] where the exact values of the interpolatory function �n at integers forn � 2 are presented.The techniques for the computation of �(m)n are the local subdivision method and the divideddi�erence approximation. The derivatives are just the limits of their corresponding divideddi�erence approximations. From the construction of the algorithm, it can be found that thelocal iteration matrix C when n = 2 is given by0BBBBBBBBBBBBBBBBBBBBBBBB@
0 0 1 0 0 0 0 0 03256 � 25256 150256 150256 � 25256 3256 0 0 00 0 0 1 0 0 0 0 00 3256 � 25256 150256 150256 � 25256 3256 0 00 0 0 0 1 0 0 0 00 0 3256 � 25256 150256 150256 � 25256 3256 00 0 0 0 0 1 0 0 00 0 0 3256 � 25256 150256 150256 � 25256 32560 0 0 0 0 0 1 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCA
:

In another word, C is the matrix form of the local subdivision scheme for n = 2. The entries ofC are determined by the scheme (6) or (8) and the size of C is just large enough to determinethe local property of �2(t) at a single point. It can be shown from the reproduction of quinticDRAFT August 31, 1998



Y. P. WANG, R. QU: INITIALIZATION AND INNER PRODUCTCOMPUTATIONS OFWAVELET TRANSFORMBY ISS5polynomials that the �rst six eigenvalues and their corresponding eigenvectors of C are given by�k = 2�k;�k = ((�4)k; (�3)k; (�2)k; (�1)k; 0; 1; 2k ; 3k; 4k)T ; k = 0; � � � ; 5and the other eigenvalues are:1; 12 ; 14 ; 964 ; 18 ; � 9128 ; 116 ; � 116 ; 132 :The exact values of all the corresponding normalized left and right eigenvectors can be obtainedby Maple. For example, the �rst three pairs are given by the following:�0 := (1; 1; 1; 1; 1; 1; 1; 1; 1)T ;�0 := (0; 0; 0; 0; 1; 0; 0; 0; 0)T ;�1 := (�4;�3;�2;�1; 0; 1; 2; 3; 4)T ;�1 := (�3;�128; 1272;�6528; 0; 6528;�1272; 128; 3)T =8760;�2 := (16; 9; 4; 1; 0; 1; 4; 9; 16)T ;�2 := (9; 192;�1472; 5696;�8850; 5696;�1427; 192; 9)T =3360:In order to evaluate the divided di�erence easily, the following preliminary result is needed [14].Lemma 1: Given a square matrix A of order l, let the normalized left and right (generalized)eigenvectors of A be denoted by f�i; �ig. Then, for any vector f 2 Rl, we have the following\Fourier" expansion f = lXi=1(fT�i)�i: (9)From the above properties of C, Lemma 1 and the divided di�erence approximation, the followingresult is obtained (cf. [14]).Theorem 1: The fundamental solution �2 is twice continuously di�erentiable and supported on(�5; 5), and its �rst and second order derivatives at integers are given by�02(0) = 0; �002(0) = � 29556 ;�02(�1) = � 272365 ; �002(�1) = 356105 ;�02(�2) = � 53365 ; �002(�2) = � 14271680 ;�02(�3) = � 161095 ; �002(�3) = 435 ;�02(�4) = � 12920 ; �002(�4) = 3560 : (10)The graphs of �2(t) and its derivatives �02(t) and �002(t) are shown in Figure 1.August 31, 1998 DRAFT



6 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 1999It is easy to check that the derivatives of �n(t) also satisfy a two-scale relation similar to (8):�(m)n (t) = 2m[�(m)n (2t) + nXj=0Ln;j�(m)n (2t� (2j + 1))]: (11)Therefore, from the above values of the derivatives of �n(t) we can compute all the derivativevalues of �n(t) at dyadic points easily. For simplicity, (11) can be rewritten as�(m)n (t) = [M � �(m)n ](2t); (12)where the mask or transfer function M is given by the following sequence:2mfLn;n; 0; Ln;n�1; � � � ; 0; Ln;0; 1; Ln;0; 0; � � � ; Ln;n�1; 0; Ln;ng: (13)III. Initialization and inner product computations using ISSSuppose N is the number of samples of the signal and the sampling rate is 1 without loss ofgenerality. Our strategy is to use the interpolatory basis �n to approximate both the signal andwavelets in (2) and (3). We now formulate (1) and (4) in the following general casec(m)J (k) = 2� J2 Z f(t) (m)(2�J t� k)dt; m = 0; 1; � � � ; (14)where m denotes the m-th order derivative of the wavelet function. If we represent both thesignal f and  (m) using the interpolatory basis �n in (2) and (3) we will arrive at the followingc(m)J (k) =2� J2 Z (Xi2Z f(i)�n(t� i))(Xl2Z  (l)�(m)n (2�J t� k � l))dt= 2� J2 Xi Xl f(i) (l) Z �n(t� i)�(m)n (2�J t� k � l))dt: (15)By de�ning �(m)J (x) = R �n(t)�(m)n (2�J t � x)dt, we can conclude that �(m)J is also re�nable andit is easy to verify that the values of �(m)J at integers can be computed recursively from �(m)0through the two-scale relation (12):�(m)J (k) = (�(m)J �M)(2k) = � � �= (�(m)0 �M �M"2 � � � � �M"2J�1)(2Jk);DRAFT August 31, 1998



Y. P. WANG, R. QU: INITIALIZATION AND INNER PRODUCTCOMPUTATIONS OFWAVELET TRANSFORMBY ISS7whereM"J denotes the up-sampling operation which is obtained by inserting J�1 zeros betweenevery two adjacent elements of the mask M given in (13). Thus, we only need to evaluate �(m)0at integers �(m)0 (k) = Z �n(t)�(m)n (t� k)dt = (�1)m Z �n(t)�(m)n (k � t)dt= (�1)m(�n � �(m)n )(k) = (�1)m�(m)n (k):Hence this formula is exact. At last, we can express (15) as follows:c(m)J (k) = 2� J2 Xi Xl f(i) (l)(�(m)0 �M �M"2 � � � � �M"2J�1)(2J(k + l)� i) = 2� J2 Pl  (l)(f � �(m)0 �M �M"2 � � � � �M"2J�1)(2J(k + l)):In the above formula, the initialization and inner products are computed recursively and thusthe computational complexity is O(N).IV. DiscussionsA. Approximation errorsIn the previous section, we project both the signal f and the wavelets  (m)n into the hierarchicalsampling space. Error estimates of the approximation to the limit curves by the piecewise linearinterpolants P k(t) are given by the following (cf. [13], [14]).Theorem 2: Suppose F (t); t 2 R, is a regular and C2n+2 curve in Rm; m � 2. Let P (t); t 2 R;be the limit curve generated by scheme (6) from the initial data Pi := F (ih); i 2 Z; 0 < h < 1.Then, on any �nite interval [a; b], we have the following estimatekF (ht) � P (t)k1 � M2n+2(F )(2n+ 2)! h2n+2 = O(h2n+2);where the number M2n+2(F ) depends only on the derivatives of F (t) and n. Similarly, we havekhmF (m)(ht)� P (m)(t)k1 = O(h2n+2�m); m = 0; 1; � � � n2 :Therefore, we can conclude by the triangle inequalitykc2Jf � ~c2Jfk1 = kf �  (m)2l � ~f � ~ (m)2l k1� kf � ~fk1k (m)k1 + k (m)2l � ~ (m)2l k1k ~fk1that the approximation order of our algorithm is O(h2n+2�m).In Figure 2 we show the interpolation results of the function f(t) = etsin(t); t 2 [0; 10] using theISS approach and the sinc bases. Such a function is not band-limited. It can be shown that theISS method provides a better result than the Shannon bases.August 31, 1998 DRAFT



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 1999B. Comparison with other approachesThe asymptotic behavior of the coe�cients (7) when the order n tends to in�nity is (cf. [9]):limn!1Ln;j = 1� (�1)j2j+1 : Therefore, the impulse responses fg1k g in the two-scale relation (8) becomeg1k = 8><>: �j if k = 2j;1� (�1)j2j+1 if k = 2j + 1 = sink�2k�2and the interpolatory function �n approaches the sinc function �1(t) = sin�t�t when n goes toin�nity. Therefore, for band-limited signal, one can increase the order of ISS to recover the signalfrom its �nite samples.In [1], [2] the signal f(t) is supposed to be approximated by the standard sinc bases and theinitial values are obtained by projecting the signal into the multiresolution space VJ . Then thecomputation of these initial values becomesc0J(k) =Xn f(n)�(k � 2�Jn) (16)and �(m) =< sinc; 'Jm >= 12� Z �(!)p2J�(2J!)exp(i2J!m)d! (17)where �(!) = 1, for j!j � � and 0 elsewhere. It is assumed in [1] and [2] that for large J � 0 thebehavior of �(2J!), for j!j � � can be neglected. Then sinc(t) can be assimilated to a Diracfunction. Hence (16) reduces toc0J(k) = p2�JXn f(n)'(2�Jk � n):The quality of such an approximation lies in the regularity of the low-pass �lter. The higherdegree of the regularity of ', the better of the approximation so that most of the energy lieswithin j!j � �. Therefore, such approach would be useless in the case of scaling function whosesupport is �1 � t � 1 (e.g., the Haar wavelet). In Figure 3 we compare the results using ISS withthis approach. For illustration the signal is supposed to be Dirac function f(t) = �(t� t0). Thenthe initialization coe�cients are just the sampling points of p2�J'(2�J t0�k). Good results canbe obtained by using ISS as shown in Figure 3.Similarly, for the case J < 0 one can roughly take �(2J!) = 1 for j!j � � as discussed in [2].Then the computation of the initial coe�cients reduces toc0J(k) = p2JXn f(n)sinc(2Jk � n);DRAFT August 31, 1998



Y. P. WANG, R. QU: INITIALIZATION AND INNER PRODUCTCOMPUTATIONS OFWAVELET TRANSFORMBY ISS9which uses the Shannon functions as interpolating bases. This approach can only work well when�(2J!) = 1 for j!j � � which is not always the case in practice.We now compare our method with the spline approach used in [3]. If B-splines of order greaterthan 0 are used, the size of the interpolating mask is in�nite [5], which has to be truncated orusing other method. For ISS the size of mask is �nite and therefore computationally e�cient.Another advantage of ISS is that such an approach is local. One can choose the interpolationpoints non-uniformly by assigning more interpolation points around irregular locations. Thedisadvantage of ISS is that the generated curves are not polynomial splines.V. ConclusionsIn this correspondence, we propose the ISS approach for the initialization of wavelet transformwhich is very important for further applications. Moreover, the proposed method also providesan e�cient evaluation of inner products of wavelets and their derivatives which is essential inthe wavelet-Galerkin method. We formulate a general procedure for the computation of exactderivative values of the interpolatory fundamental function at dyadic points. The error analysisshows that the method is exact for certain polynomials. The numerical experiments have shownthe high accuracy and e�ciency of the method.References[1] P. Abry and P. Flandrin, On the initialization of the discrete wavelet transform algorithm, IEEE SignalProcessing Letters, vol. 1, no. 2, pp. 32-34, 1994.[2] X. P. Zhang, L. S. Tan and Y.-N. Peng, From the wavelet series to the discrete wavelet transform - theinitialization, IEEE Trans. Signal Processing, vol. 44, no. 1, pp. 129-133, 1996.[3] C. J. Zarowski, An approach to initializing the wavelet packet algorithm, IEEE Signal Processing Letters, vol.4, no. 5, pp. 132-134, 1997.[4] P. L. Butzer, W. Engels, S. Ries, R. L. Stens, The Shannon sampling series and the reconstruction of signalsin terms of linear, quadrature and cubic splines, SIAM J. Appl. Math., vol. 46, no. 2, pp. 299-323, 1986.[5] M. Unser, A. Aldroubi and M. Eden, Fast B-spline algorithms for continuous image representation and inter-polation, IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 277-285, 1991.[6] Yu-Ping Wang, S. L. Lee, Scale-space derived from B-splines, to appear in IEEE Trans. Pattern Anal. MachineIntell.[7] W. Dahmen and C. A. Michelli, Using the re�nement equation for evaluating integrals of wavelets, SIAM J.Numer. Anal., vol. 30, pp. 507-537, 1993.[8] J. M. Restrepo and G. K. Leaf, Inner product computations using periodized Daubechies wavelets, Int J.Numer. Method in engineering, vol. 40, pp. 3557-3578, 1997.August 31, 1998 DRAFT
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Fig. 1. Interpolatory basis function �2(t) and its �rst and second derivatives �02(t) and �002 (t).
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Fig. 2. Interpolation of the function f(t) = etsin(t); t = 0; 0:125; 0:25; :::; 10 (solid line) using the inter-polatory subdivision scheme (dotted line) and the Shannon bases sinc(t) (shown using points). Theinterpolating points are taken at t = 0; 0:5; 1; :::; 10:
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Fig. 3. Comparisons of the initialization results between di�erent methods. The scaling function is chosenas the Daubechies scaling function of order 3. The ideal initialization coe�cients are drawn in solidline. The result using ISS is shown by the dashed line. The result using algorithms in [1], [2] is shownby the dotted line.
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