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Abstract
The initialization of wavelet transforms and the inner product computations of wavelets with their
derivatives are very important in many applications. In this correspondence, the interpolatory subdivision
scheme (ISS) is proposed to solve these problems efficiently. We introduce a general procedure to compute
the exact values of derivatives of the interpolatory fundamental function and then derive a fast recursive
algorithm for the realization of the initialization and inner product evaluations. Error analysis of the
algorithm and its comparison with other approaches are discussed. Numerical experiments demonstrate

high performance of the algorithm.
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I. INTRODUCTION

Wavelet transform has become a powerful tool for signal analysis. Efficient implementation
of wavelet transforms is an important step towards further applications. The initialization of
wavelet transform arises from the pyramid algorithm for discrete wavelet transform or wavelet
packet transform. One usually needs to compute the following coefficients exactly before using

the recursive pyramid algorithm:

Gk =27F [ feppe e k. (1)

There are several approaches to solve this problem (cf. [1], [2], [3]). Usually this problem is
treated by approximating both the signal and the wavelet (or scaling function) using certain

basis function:
F@) =" f(k)x(t—Fk), (2)
P(t) =Y h(k)(t — k). (3)

In [1], [2] the approximation basis is chosen to be the standard sinc function as in the Shannon
sampling theorem [4]. In [3] the signal f is assumed to be piecewise constant in dyadic intervals.
Equivalently, Oth-order B-splines were used to approximate the signal. Moreover, Chui’s inter-
polatory graphical display algorithm was used, which was in fact due to the refinable property
of splines [5], [6]. Therefore, most of these approaches can be attributed to the curve fitting
problem using certain types of subdivision schemes. In this correspondence, we aim to use the
interpolatory subdivision scheme (ISS) [12], [13] to deal with this problem. In particular, we pro-

pose the problem in a more general setting. For the numerical solution of PDEs using wavelets,
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the computations of the inner products of the signal (wavelets) with the derivatives of scaling
functions or wavelets (™) are usually needed. In wavelet-Garlerkin method, one usually needs

to evaluate the following integral for all m,J € Z, and k € Z:

A (k) = 9+ /f(t)qp(m)(z*"t — k)dt. (4)

As an alternative, our method also provides a simple and efficient way for the computation of

the inner products of wavelets and their derivatives discussed in [7], [8].

II. AN INTERPOLATORY SUBDIVISION SCHEME
A. The definitions

A uniform subdivision scheme which is also called the binary subdivision algorithm or stationary
subdivision, is defined as follows. Suppose that the initial control points in R? (or in R, d > 1)
are denoted by P?, i € Z, then, the refined control points { P**',i € Z} are obtained from {PF}
recursively by the following refinement equations

P =30, P, i€Z, k>0. (5)

Jjez

Obviously, a typical example of a binary subdivision scheme is the scheme generating uniform
B-splines of order n. In this case the mask is given by the binomial coefficients. The scheme (5)
is a stepwise interpolatory scheme if and only if the mask {a;, j € Z} satisfies ay; = 6;, Vi € Z.
Two frequently used interpolatory subdivision schemes are the ‘4 point interpolatory scheme’
[10], [11] and the ‘6-point interpolatory scheme’ [12]. A more general symmetric interpolatory

subdivision algorithm for curves was given by [12], [13]:

k41 _ k
P21', - P1 I
n

k+1 o k k
P2i+1 - ani(Pifj + Pi+j+1 )a

7=0

where n is called the degree of the scheme and {L, ;} are given by

L, = [(2n 4+ 1)N]? (—1)/ I+ 1

T4 1) 2541 nei |’

2n +1 . . .
where denotes the binomial coefficient.

n—j
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The scheme defined by (6) produces C* curves for any initial data. Furthermore, for such choice
of coefficients the scheme reproduces all parametric polynomial curves of degree less than or
equal to 2n + 1 [13].

Let ¢,(t) be the limit curve generated from the cardinal data {P; = (i,6,)"}. Then ¢,(i) =
0;,1 € Z and ¢,,(t) satisfies the following two-scale relation

2n+1

$a(t) = D gida(2t—k), tER, (8)

j=— (1)
where qn = {Ln,n: 07 Ln,nfla T 70; Ln,()a 1: Ln,()a 0: )

Lyn-1,0,L,,} Usually ¢,(t) is called the interpolatory fundamental function or basis.

B. Computing procedure for the derivative ¢{™

In this section, we present the principle for the computation of the exact values of derivatives of
the interpolatory function ¢,,. As an example, we only consider the case of n = 2. More details
can be found in [14], [15] where the exact values of the interpolatory function ¢, at integers for
n > 2 are presented.

The techniques for the computation of ¢{™ are the local subdivision method and the divided
difference approximation. The derivatives are just the limits of their corresponding divided
difference approximations. From the construction of the algorithm, it can be found that the

local iteration matrix C' when n = 2 is given by

o 0 1 0 0 0 0 0 0
3“6 e me “we w0 0 0
o 0 0 1 0 0 0 0 0
0 5% ~o9 s a6 " w0 0
o 0 0 0 1 0 0 0 0
0 0 5% 5% a6 e s sV
o 0 0 0 0 1 0 0 0
0 0 0 55 —5 3% 2 w6 %
o 0 0 0 0 0 1 0 0

In another word, C' is the matrix form of the local subdivision scheme for n = 2. The entries of
C are determined by the scheme (6) or (8) and the size of C' is just large enough to determine

the local property of ¢,(¢) at a single point. It can be shown from the reproduction of quintic
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polynomials that the first six eigenvalues and their corresponding eigenvectors of C' are given by

ék = ((_4)L7 (_3)k7 (_Q)ka (_1)k7 05 17 Qka 3k7 4k)T7 k= 07 T 75
and the other eigenvalues are:

9 9 1 1 1

1
1 s, —
’ ' 647 8 1287 167 167 32

~] =

1
57
The exact values of all the corresponding normalized left and right eigenvectors can be obtained

by Maple. For example, the first three pairs are given by the following:

& =(1,1,1,1,1,1,1,1,1)",

7o : (0000,1,0000)

& = (-4, -2,-1,0,1,2,3,4)T,

n = (—3,—-128,1272, —6528,0,6528, —1272,128, 3)" /8760,
& = (16,9,4,1,0,1,4,9,16)",

ny := (9,192, —1472,5696, —8850, 5696, —1427,192,9)7 /3360.

In order to evaluate the divided difference easily, the following preliminary result is needed [14].
Lemma 1: Given a square matrix A of order I, let the normalized left and right (generalized)
eigenvectors of A be denoted by {7;,(;}. Then, for any vector f € R', we have the following
“Fourier” expansion

f= mez (9)

From the above properties of C', Lemma 1 and t ‘rhe divided difference approximation, the following
result is obtained (cf. [14]).
Theorem 1: The fundamental solution ¢, is twice continuously differentiable and supported on

(—5,5), and its first and second order derivatives at integers are given by

$(0) =0, $y(0) = — 22,
gh(£1) =FL2,  fy(E1) = 2
$h(£2) =+I2 gy(2) = 12 (10)
$o(£3) = Frgs, S5(E3) = 55,
Gh(£4) = Fobs, Sh(£4) = 2o

2
The graphs of ¢,(t) and its derivatives ¢)(¢) and ¢} (t) are shown in Figure 1.
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It is easy to check that the derivatives of ¢, (%) also satisfy a two-scale relation similar to (8):
g (1) = 2" [gm (2t) + Zan (2t + (2 + 1))]. (11)

Therefore, from the above values of the derivatives of ¢, (#) we can compute all the derivative

values of ¢, (t) at dyadic points easily. For simplicity, (11) can be rewritten as
g (1) = [M * $™](21), (12)
where the mask or transfer function M is given by the following sequence:
2™{Lyns0, Ly yp1y-+,0, Lo, 1, Lyg, 0, Ly 1,0, Ly 0 (13)

ITI. INITIALIZATION AND INNER PRODUCT COMPUTATIONS USING ISS

Suppose N is the number of samples of the signal and the sampling rate is 1 without loss of
generality. Our strategy is to use the interpolatory basis ¢, to approximate both the signal and

wavelets in (2) and (3). We now formulate (1) and (4) in the following general case

c /f 277t —k)dt, m=0,1,--, (14)

where m denotes the m-th order derivative of the wavelet function. If we represent both the

signal f and 9(™) using the interpolatory basis ¢,, in (2) and (3) we will arrive at the following

%'/Zf Voot — ) (S PP (27t — k - 1))dt

i€Z lez

=2 E S FOU0) [ dale - D@ b D), (15)

By defining <I> = [¢a(t) 277t — x)dt, we can conclude that @F,m) is also refinable and
it is easy to verify that the values of @F,m) at integers can be computed recursively from (I>((]m)

through the two-scale relation (12):
D5 (k) = (@)« M)(2k) =

= (B™ % M % Mg % -+ % Mypo—1)(27k),
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where M, ; denotes the up-sampling operation which is obtained by inserting J —1 zeros between

every two adjacent elements of the mask M given in (13). Thus, we only need to evaluate @f]m)

/¢n /qﬁn ™ (b — t)dt
—1)"™ (¢ * ) (k) = (=1)" ™ (k).

Hence this formula is exact. At last, we can express (15) as follows:

at integers

Y(k) =275 ST FE) (B + M+ My 5 -+ % Mysa-)
i 1

(k1) = i) =274 DO = O 5 Mo Myz x - % Myar ) (2 (6 +1).
In the above formula, the initialization and inner products are computed recursively and thus

the computational complexity is O(N).

IV. DISCUSSIONS
A. Approzimation errors

In the previous section, we project both the signal f and the wavelets 9("™) into the hierarchical
sampling space. Error estimates of the approximation to the limit curves by the piecewise linear
interpolants P*(¢) are given by the following (cf. [13], [14]).

Theorem 2: Suppose F(t), t € R, is a regular and C*"*? curve in R™, m > 2. Let P(t), t € R,
be the limit curve generated by scheme (6) from the initial data P; := F(ih), i € Z, 0 < h < 1.

Then, on any finite interval [a, b], we have the following estimate

M2n+2(F)
(2n + 2)!

where the number M,,,,»(F') depends only on the derivatives of F'(¢) and n. Similarly, we have

||F(ht) — P(t)Hoo < h2n+2 — O(h2n+2),

|B7 FU™ (ht) = PU)(1) oo = OB ™), m = 0,1, -

|3

Therefore, we can conclude by the triangle inequality
learf = Ear flloo = I1f % 957 = F#9" le
S = Floo ™ oo + 1957 = 957 ool 1l

that the approximation order of our algorithm is O(h*"*2~™).
In Figure 2 we show the interpolation results of the function f(t) = e'sin(t),t € [0,10] using the
ISS approach and the sinc bases. Such a function is not band-limited. It can be shown that the

ISS method provides a better result than the Shannon bases.
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B. Comparison with other approaches

The asymptotic behavior of the coefficients (7) when the order n tends to infinity is (cf. [9]):

lim L, ; = %(27+1 Therefore, the impulse responses {¢g;°} in the two-scale relation (8) become
gk - 1 (71)j . . - kn
oy if k=2j+1 2

and the interpolatory function ¢, approaches the sinc function ¢ () = %’” when n goes to

infinity. Therefore, for band-limited signal, one can increase the order of ISS to recover the signal
from its finite samples.

In [1], [2] the signal f(¢) is supposed to be approximated by the standard sinc bases and the
initial values are obtained by projecting the signal into the multiresolution space V;. Then the

computation of these initial values becomes

Zf alk —277n) (16)

and

a(m) =< sine, pj, >= — o / (W)V27®(2” w)exp(i2” wm)dw (17)

where E(w) = 1, for |w| < 7 and 0 elsewhere. It is assumed in [1] and [2] that for large J > 0 the
behavior of ®(2/w), for |w| > 7 can be neglected. Then sinc(t) can be assimilated to a Dirac

function. Hence (16) reduces to
A(k) = VET Y F(n)p(2 'k = n).

The quality of such an approximation lies in the regularity of the low-pass filter. The higher
degree of the regularity of ¢, the better of the approximation so that most of the energy lies
within |w| < m. Therefore, such approach would be useless in the case of scaling function whose
support is —1 < ¢ <1 (e.g., the Haar wavelet). In Figure 3 we compare the results using ISS with
this approach. For illustration the signal is supposed to be Dirac function f(¢) = 6(¢ — ¢;). Then
the initialization coefficients are just the sampling points of vV2—7 (2 7t, — k). Good results can
be obtained by using ISS as shown in Figure 3.

Similarly, for the case J < 0 one can roughly take ®(2’w) = 1 for |w| < 7 as discussed in [2].

Then the computation of the initial coefficients reduces to

\/_Zf )sinc(2’k —n),
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which uses the Shannon functions as interpolating bases. This approach can only work well when
®(2’w) =1 for |w| < 7 which is not always the case in practice.

We now compare our method with the spline approach used in [3]. If B-splines of order greater
than 0 are used, the size of the interpolating mask is infinite [5], which has to be truncated or
using other method. For ISS the size of mask is finite and therefore computationally efficient.
Another advantage of ISS is that such an approach is local. One can choose the interpolation
points non-uniformly by assigning more interpolation points around irregular locations. The

disadvantage of ISS is that the generated curves are not polynomial splines.

V. CONCLUSIONS

In this correspondence, we propose the ISS approach for the initialization of wavelet transform
which is very important for further applications. Moreover, the proposed method also provides
an efficient evaluation of inner products of wavelets and their derivatives which is essential in
the wavelet-Galerkin method. We formulate a general procedure for the computation of exact
derivative values of the interpolatory fundamental function at dyadic points. The error analysis
shows that the method is exact for certain polynomials. The numerical experiments have shown

the high accuracy and efficiency of the method.
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Fig. 1. Interpolatory basis function ¢-(¢) and its first and second derivatives ¢5(t) and ¢4 (t).
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Fig. 2. TInterpolation of the function f(t) = elsin(t),t = 0,0.125,0.25, ...,10 (solid line) using the inter-
polatory subdivision scheme (dotted line) and the Shannon bases sinc(t) (shown using points). The

interpolating points are taken at ¢ = 0,0.5,1, ..., 10.
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14

Fig. 3. Comparisons of the initialization results between different methods. The scaling function is chosen
as the Daubechies scaling function of order 3. The ideal initialization coefficients are drawn in solid

line. The result using ISS is shown by the dashed line. The result using algorithms in [1], [2] is shown

by the dotted line.
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